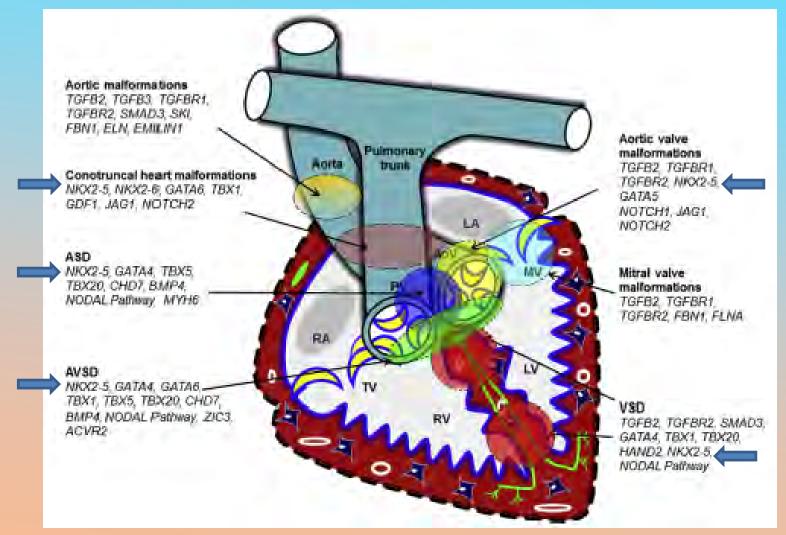

Innovative zebrafish research for investigating CHDs or

Using zebrafish to understand how to build a heart


Hank Farr, Kimia Imani, Darren Pouv, Lisa Maves

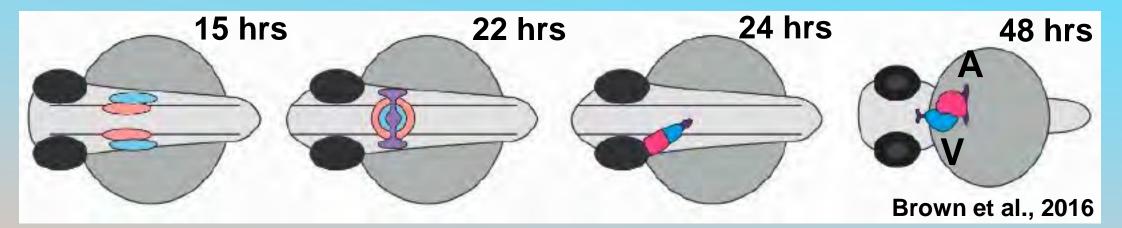
Center for Developmental Biology and Regenerative Medicine Seattle Children's Research Institute

Division of Cardiology UW Department of Pediatrics

Genetics of congenital heart defects

Estimate of 400+ CHD risk genes (Jin et al., 2017, *Nature Genetics*)

Roles for


modifier genes?

Azhar and Ware, 2015

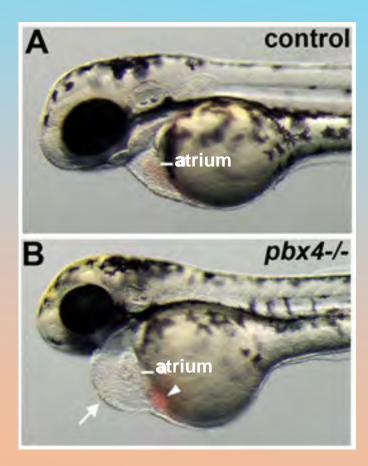
Goals

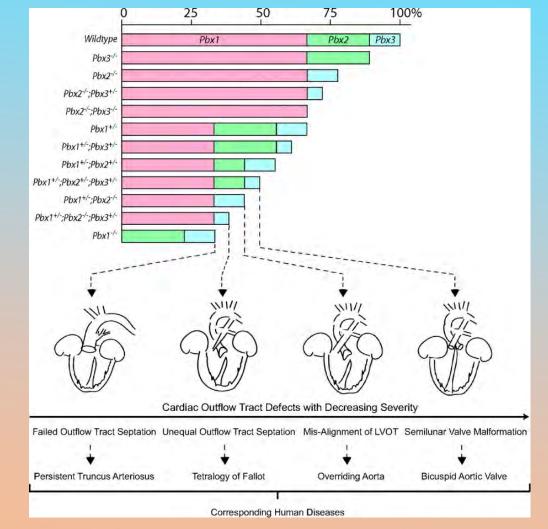
- 1. Advantages and challenges of zebrafish models
- 2. Genome editing in zebrafish to characterize a genetic variant in congenital heart defects
- 3. Roles for Pbx and Meis factors in heart development and cardiomyocyte differentiation

Zebrafish heart development

•Rapid, external development

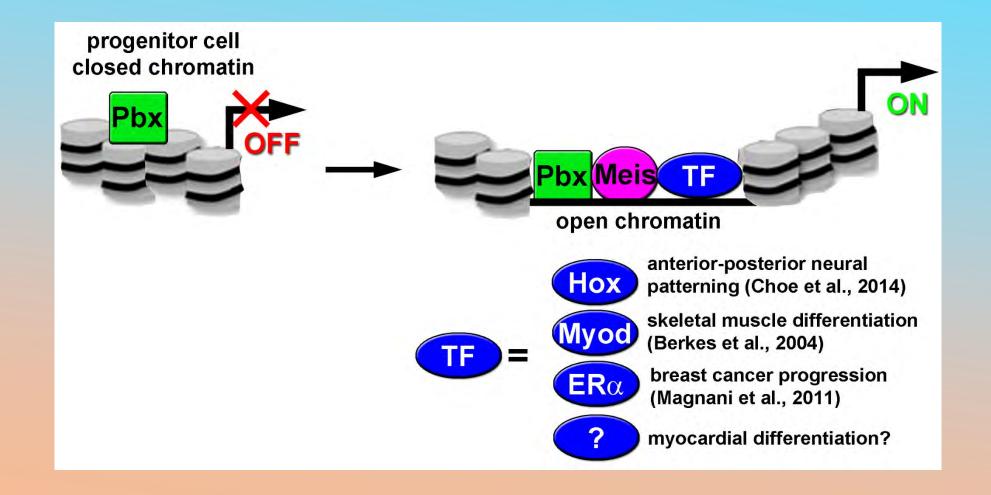
•Hundreds of embryos/day

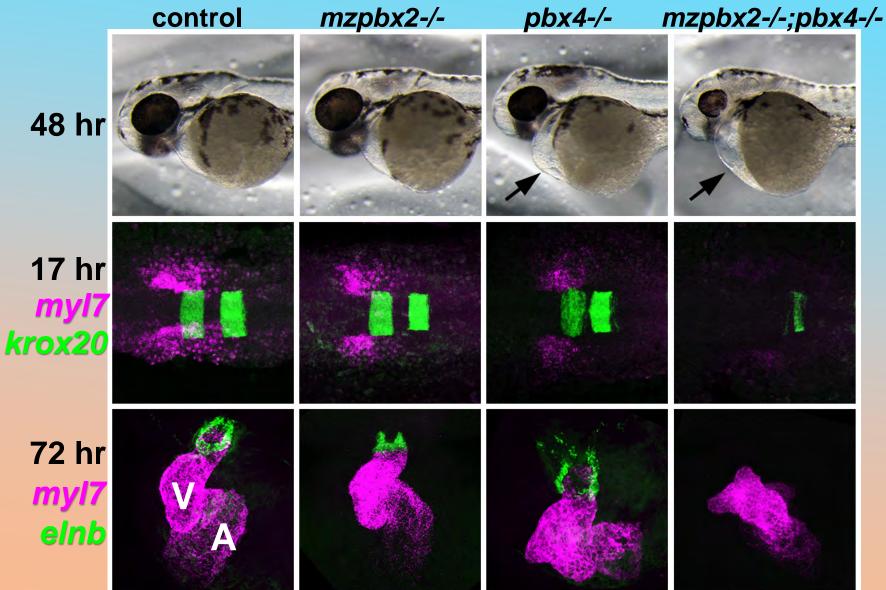

•Genome editing


http://www.sfgate.com

Pbx mutant animal models have heart defects

Zebrafish mutants:


Maves et al., 2009 *Dev Bio* Kao et al., 2015 *J Dev Bio*


Mouse mutants:

Stankunas et al., 2008 Circ Res

Pbx proteins are pioneer factors that promote regulatory transcription factor binding

Pbx proteins are required for myocardial differentiation and outflow tract formation

Human *PBX* gene variants linked to CHDs

De novo, deleterious sequence variants that alter the transcriptional activity of the homeoprotein PBX1 are associated with intellectual disability and pleiotropic developmental defects

Anne Slavotinek^{1,2,*,†}, Maurizio Risolino^{2,3,†}, Marta Losa^{2,3}, Megan T. Cho⁴, Kristin G. Monaghan⁴, Dina Schneidman-Duhovny^{5,6}, Sarah Parisotto⁷, Johanna C. Herkert⁸, Alexander P.A. Stegmann^{9,10}, Kathryn Miller¹¹, Natasha Shur¹¹, Jacqueline Chui¹², Eric Muller¹², Suzanne DeBrosse¹³, Justin O. Szot^{14,15}, Gavin Chapman^{14,15}, Nicholas S. Pachter^{16,17}, David S. Winlaw^{18,19}, Bryce A. Mendelsohn^{1,2}, Joline Dalton²⁰, Kyriakie Sarafoglou²¹, Peter I. Karachunski²², Jane M. Lewis²³, Helio Pedro⁷, Sally L. Dunwoodie^{14,15}, Licia Selleri^{2,3,‡} and Joseph Shieh^{1,2,‡}

Human Molecular Genetics, 2017, Vol. 26, No. 24

Contents lists available at SciVerse ScienceDirect

European Journal of Medical Genetics

A TOROPEAN TOURNAL A DE REDICIL ORDERN

iournal homepage: http://www.elsevier.com/locate/ejmg

Short report

Non-synonymous variants in pre-B cell leukemia homeobox (PBX) genes are associated with congenital heart defects

Cammon B. Arrington^a, Benjamin R. Dowse^a, Steven B. Bleyl^b, Neil E. Bowles^{a,*}

Contents lists available at SciVerse ScienceDirect

European Journal of Medical Genetics

A REPORTED TO THE AND T

journal homepage: http://www.elsevier.com/locate/ejmg

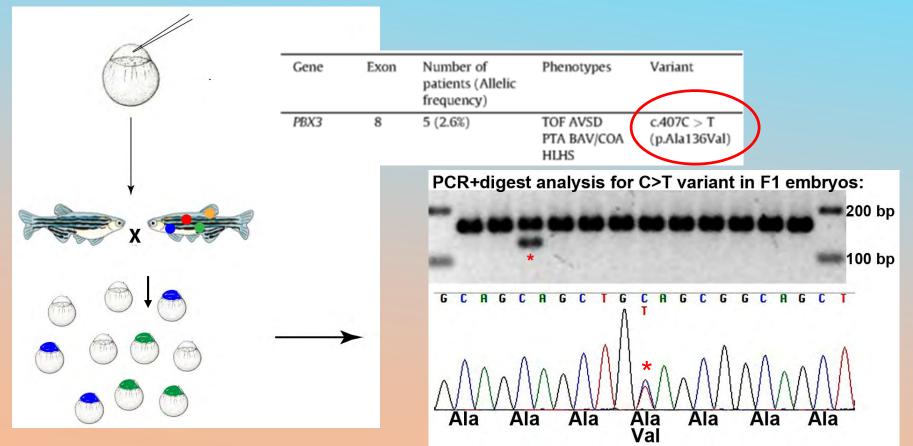
Short report

Non-synonymous variants in pre-B cell leukemia homeobox (PBX) genes are associated with congenital heart defects

Cammon B. Arrington^a, Benjamin R. Dowse^a, Steven B. Bleyl^b, Neil E. Bowles^{a,*}

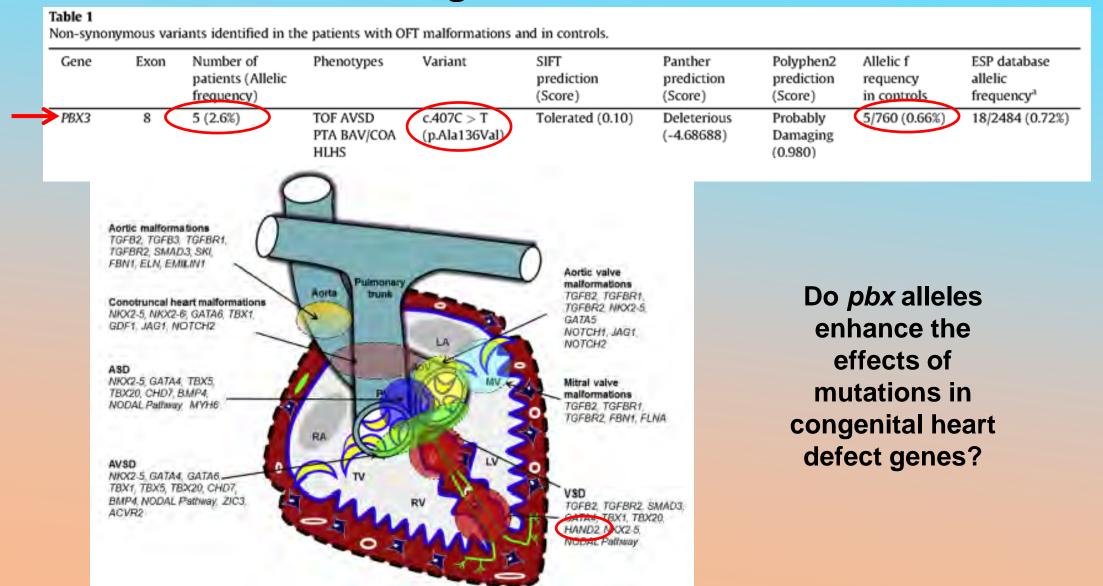
Gene	Exon	Number of patients (Allelic frequency)	Phenotypes	Variant	SIFT prediction (Score)	Panther prediction (Score)	Polyphen2 prediction (Score)	Allelic f requency in controls	ESP database allelic frequency ^a
PBX3	8	5 (2.6%)	TOF AVSD PTA BAV/COA HLHS	c.407C > T (p.Ala136Val)	Tolerated (0.10)	Deleterious (-4.68688)	Probably Damaging (0.980)	5/760 (0.66%)	18/2484 (0.72
PBX4	1	1 (0.5%)	AVSD	c.19C > T (p.Pro7Ser)	Tolerated (0.43)	No prediction	Unknown	0/760 (0%)	0/2700 (0%)
	3	1 (0.5%)	COA	c.308G > A (p.Gly103Glu)	Tolerated (0.34)	Benign (–1.18809)	Benign (0.034)	0/760 (0%)	0/2700 (0%)
	4	2 (1.1%)	COA/TGA HLHS	c.461C > T (p.Thr154Met)	Tolerated (0.08)	Benign (–2.56188)	Benign (0.104)	3/190 (1.58%)	8/2696 (0.30%
MEIS1	8	1 (0.5%)	DORV	rs61752693 (p.Arg272His)	Tolerated (0.08)	Benign (–2.49403)	Benign (0.006)	0/760 (0%)	0/2100 (0%)
MEIS3	4	1 (0.5%)	AS	c.330G> T (p.Arg117Leu)	Damaging (0.00)	Benign (-2.9254)	Possibly Damaging (0.802)	1/760 (0.13%)	0/2650 (0%)
PKNOX1	11	1 (0.5%)	DORV	c.1238A > G (p.Glu413Gly)	Tolerated (0.22)	Benign (–1.83073)	Benign (0.000)	0/760 (0%)	0/2650 (0%)

TOF: Tetralogy of Fallot; AVSD: Atrioventricular Septal Defect; PTA: Persistent Truncus Arteriosus; BAV: Bicuspid Aortic Valve; COA: Coarctation of the Aorta; HLHS: Hypoplastic Left Heart Syndrome; TGA: Transposition of the Great Arteries; AS: Aortic Stenosis; DORV: Double Outlet Right Ventricle.

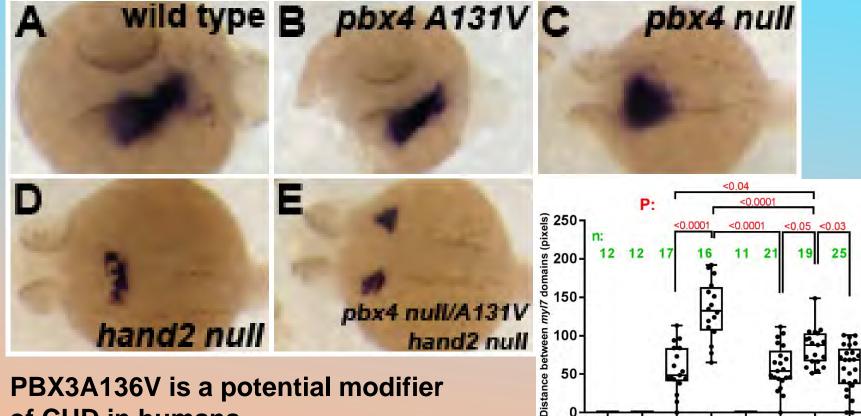

Pbx sequence associated with CHD variant is highly conserved

	Pbx3	V136
	Human	SGPEKGGGSAAAAAA
	Rhesus monkey	SGPEKGGGSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
	Mouse	SGPEKGGGSAAAAAA
	Chicken	SGPEKGGGSAAAAAA
	Zebrafish	AGPEKGGGSAAAAAAA
	Platypus	SGPEKGGGSAAAAAA AAASGGSSDNS
	Cow	SGPEKGGGSAAAAAA AAASGGSSDNS
	Horse	AGPEKGGGSAAAAAA A AASGGAGSDNS
	Xenopus	AGPEKGGGSAAAAAA A AASGGVSPDNS
	Human Pbx1	AGPEKGGGSAAAAAA A AASGGAGSDNS
	Human Pbx2	AGPEKGGGSAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
>	Zebrafish Pbx4	SGPEKGGGSAAAAAAAAGGSPNDGS

Arrington et al., 2011

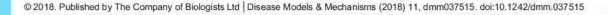

Using CRISPR/Cas9 to engineer zebrafish model of human *PBX* gene variant

Inject Cas9 + *pbx4* guide RNA + oligo with *pbx4* C>T variant



Fish homozygous for C>T variant (A131V allele) show no heart defects

PBX3(A136V) - a modifier allele in congenital heart defects?



pbx4A131V+null alleles enhance heart morphogenesis defects caused by loss of hand2

- PBX3A136V is a potential modifier of CHD in humans
- We can make a patient's fish model and test candidate genetic variants

Farr et al., 2018 Dis Mod Mech

Biologists

EDITORIAL

Zebrafish knock-ins swim into the mainstream

Sergey V. Prykhozhij¹ and Jason N. Berman^{1,2,3,*}

© 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm035972. doi:10.1242/dmm.035972

Biologists

RESEARCH ARTICLE

Functional testing of a human *PBX3* variant in zebrafish reveals a potential modifier role in congenital heart defects

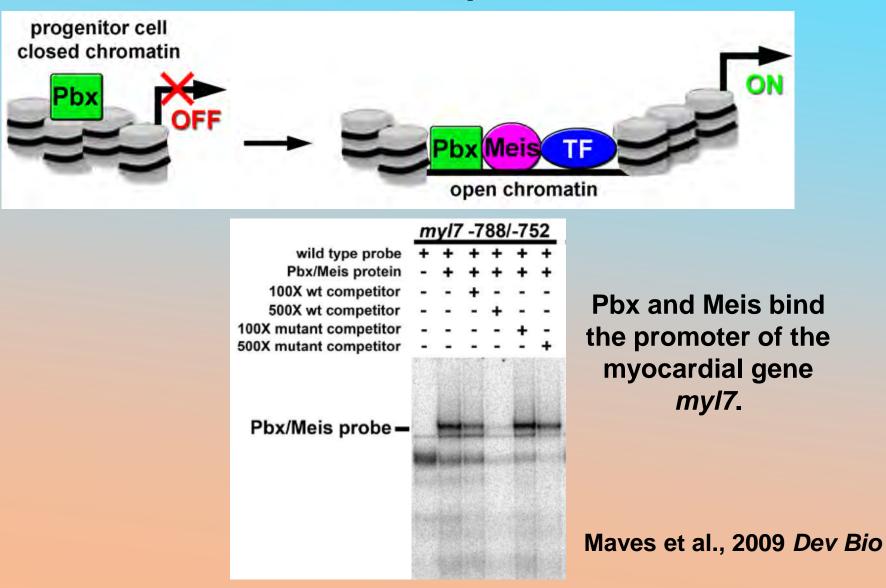
© 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm035469. doi:10.1242/dmm.035469

RESEARCH ARTICLE

Effective CRISPR/Cas9-based nucleotide editing in zebrafish to model human genetic cardiovascular disorders

Federico Tessadori^{1,*}, Helen I. Roessler^{2,*}, Sanne M. C. Savelberg^{2,*}, Sonja Chocron¹, Sarah M. Kamel¹, Karen J. Duran², Mieke M. van Haelst^{2,3,4}, Gijs van Haaften^{2,‡} and Jeroen Bakkers^{1,5,‡}

© 2018. Published by The Company of Biologists Ltd | Disease Models & Mechanisms (2018) 11, dmm035352. doi:10.1242/dmm.035352

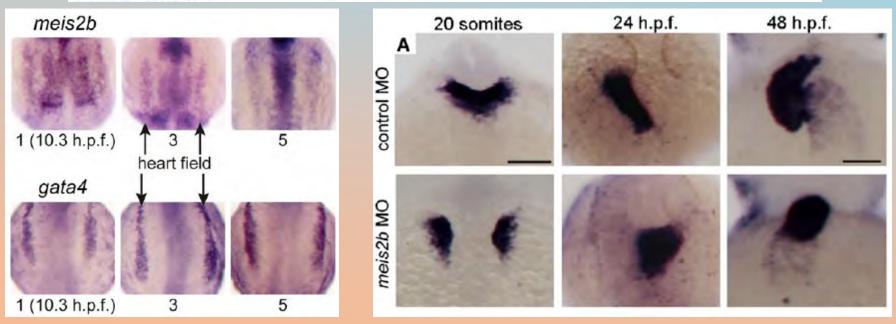

RESEARCH ARTICLE

CRISPR/Cas9-mediated homology-directed repair by ssODNs in zebrafish induces complex mutational patterns resulting from Biologi genomic integration of repair-template fragments

Biologists

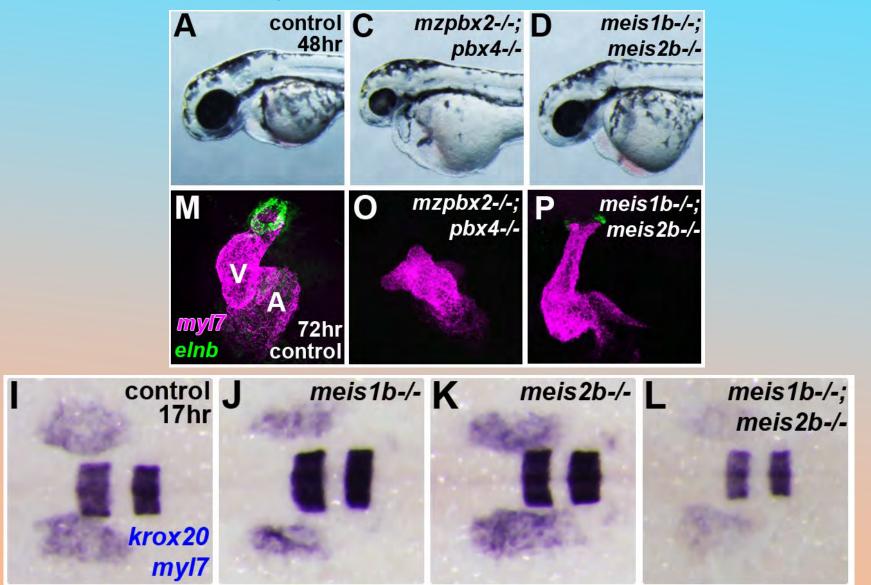
Annekatrien Boel, Hanna De Saffel, Wouter Steyaert, Bert Callewaert, Anne De Paepe, Paul J. Coucke and Andy Willaert*

Are Meis proteins required for heart development?

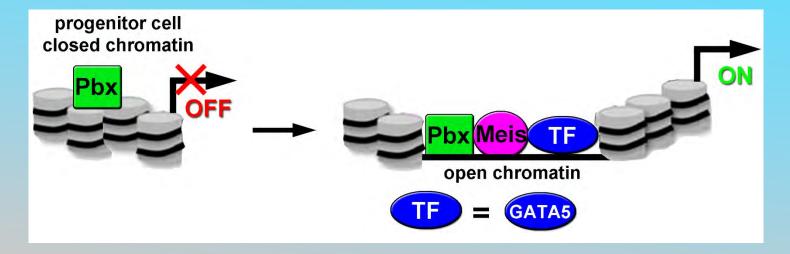

Meis2b is required for cardiac morphogenesis

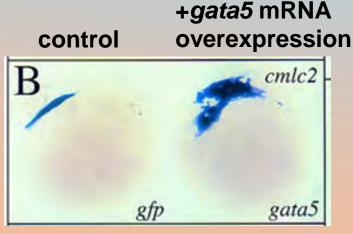
Resource

Cell


A Temporal Chromatin Signature in Human Embryonic Stem Cells Identifies Regulators of Cardiac Development

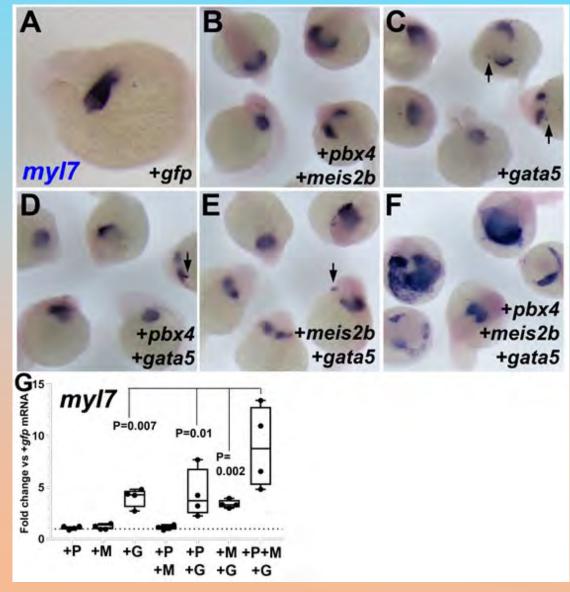
Sharon L. Paige,^{1,2,3,12} Sean Thomas,^{9,12} Cristi L. Stoick-Cooper,^{2,4,12} Hao Wang,^{5,12} Lisa Maves,¹⁰ Richard Sandstrom,⁵ Lil Pabon,^{1,2,3} Hans Reinecke,^{1,2,3} Gabriel Pratt,^{1,2,3} Gordon Keller,¹¹ Randall T. Moon,^{2,5} John Stamatoyannopoulos,^{5,6,*} and Charles E. Murry^{1,2,3,7,8,*}




Paige et al., 2012 Cell

Meis1b and Meis2b are required for cardiac morphogenesis and myocardial differentiation

Can Pbx and Meis promote myocardial differentiation?



myocardial myl7 expression

Reiter et al., 1999 Genes Dev

gata5 over-expression induces extra myocardial differentiation in zebrafish embryos

Pbx and Meis enhance Gata5 induction of myocardial differentiation

Approaches in zebrafish to understand heart development and CHDs: Conclusions

1. Genome editing in zebrafish to characterize a genetic variant in congenital heart defects

-early heart morphogenesis defects
-large numbers of embryos
-example of editing a human variant in zebrafish

2. Roles for Pbx and Meis factors in heart development and myocardial differentiation

-insight into the control of cardiomyocyte differentiation -framework for new transcription and chromatin factors

Thanks!

Maves lab: *Hank Farr UW undergraduates: Kimia Imani Darren Pouv

Collaborators: Cecilia Moens, FHCRC Chuck Murry, UW Cole Trapnell, UW Debbie Yelon, UCSD

FUNDING:

National Institute of Arthr

Musculoskeletal and Skin Diseases

