Preliminary Evaluation of a Deep Learning Approach for Echocardiographic Screening for Rheumatic Heart Disease

Lindsay Edwards, MD Advanced Imaging Fellow Stanford University May 4, 2019

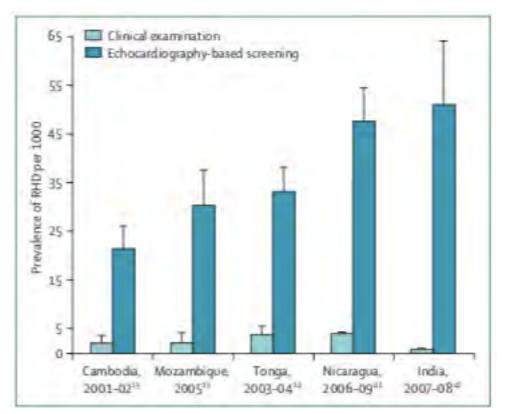
Contents

- Rheumatic heart disease
 - Screening
 - Diagnosis
- Model development
 - Echocardiographic view classification
 - Mitral regurgitation detection
- Model performance
- Significance
- Limitations
- Next steps

No disclosures

Echocardiographic Screening for RHD

- More sensitive and specific than clinical exam based screening
- 5-10 minute study, ~13 clips
- Barriers:
 - Shortage of specialized healthcare workers
 - > Equipment
 - > Electricity



Marijon 2012

Lu 2015

- Simplified criteria to detect RHD
 - Mitral regurgitation jet length \geq 1.5 cm OR
 - Any aortic insufficiency
- Overall sensitivity 73.3% and specificity 82.4% for any RHD
- Sensitivity for definite RHD 97.9%

Single-View Handheld Echocardiogram Protocol

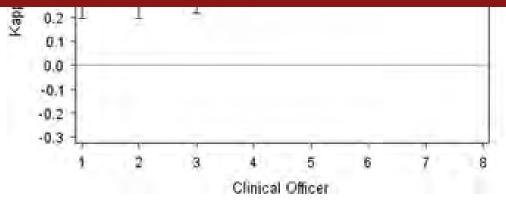
- Diamantino 2018
 - 587 studies including 76 definite, 122 borderline, and 389 on normal cases
 - Parasternal long axis color Doppler (PLAX-C) view only
 - Mitral regurgitation jet length \geq 1.5 cm or any aortic insufficiency
 - Sensitivity of 81.1%, specificity of 75.5%

Sanyahumbi 2017

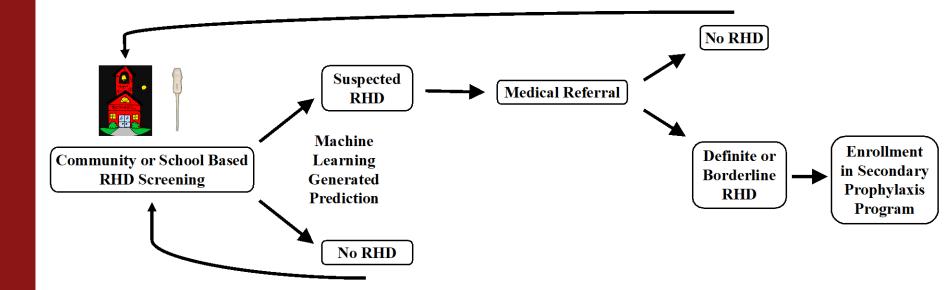
- 8 clinical officers in Malawi
 - 3 years clinical officer school
 - Subspecialty training pediatrics
- Study flow:
 - Training: 3 half-days of didactic cardiology lectures and computer RHD echo modules
 - Practical: 2 days of mentored echo screening (average 60 echos)
 - Evaluation: screened 20 children with & without RHD
 - Refer if mitral regurgitation jet more than 1.5 cm or any aortic regurgitation
- Kappa statistics for agreement between clinical officer and cardiologist referral

Sanyahumbi 2017

"When asked to provide feedback, however, the clinical officers said that, although they performed well, that they do not feel confident to screen independently."



Machine Learning for Echo Based RHD Screening



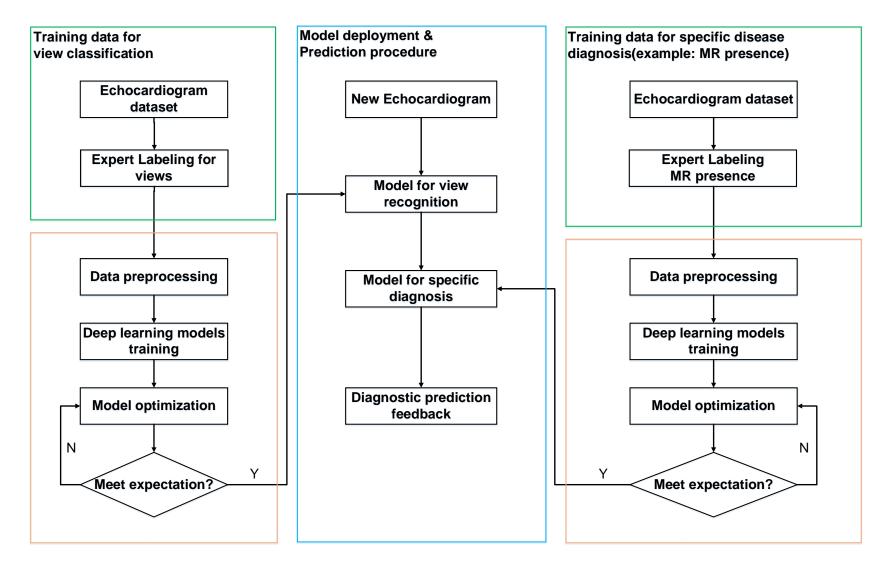
Human Subjects Research

- Waiver of approval was obtained from the Stanford University Institutional Review Board.
- Approved by the Malawi National Health Sciences Research Committee.

Echocardiograms

- 224 echos performed in Malawi, Africa, as part of a screening program to detect latent RHD.
- Philips CX50 portable echocardiography machine with an S5-1 transducer probe.
- Abbreviated RHD screening protocol.
- Machine settings were consistent with World Heart Federation recommendations for echocardiographic diagnosis of RHD.

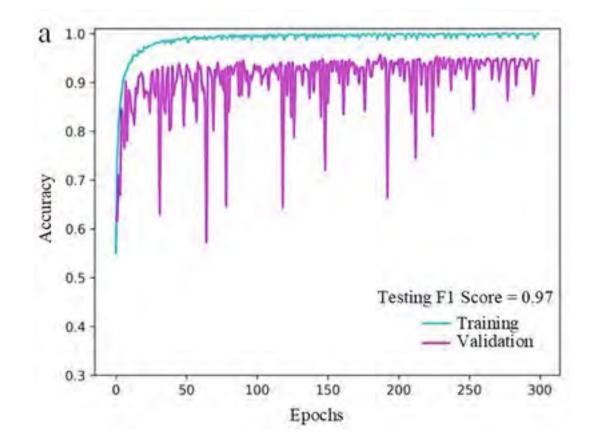
System Construction Pipeline



	View	w Total Clips	Training	Validation	Testing
	PLAX	K 1538	1138	200	200
	PLAX-	-C 1104	704	200	200
	PSAX-	AV 122	69 48	25 2	28 22
	PSAX-A	V-C 72			
PSAX-MV		MV 232	139	30	63
	PSAX-M	V-C 54	27	6	21
	A4C	1227	827	200	200
	A4C-	C 612	365	122	125
	A5C	1094	694	200	200
	A5C-	C 578	359	105	114
	Class	Total samples	Training	Validation	Testing
1	No-MR	1302	812	224	266
	MR	717	458	125	134

Echocardiographic Data Distribution

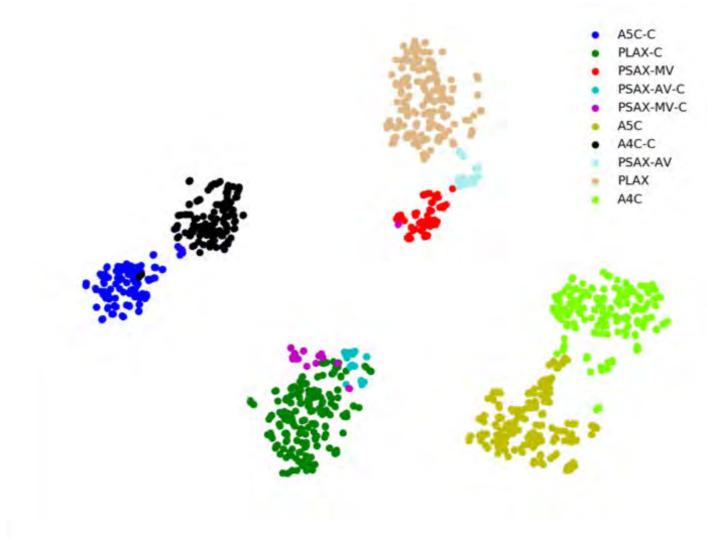
Performance of View Classification Model: F1 Score



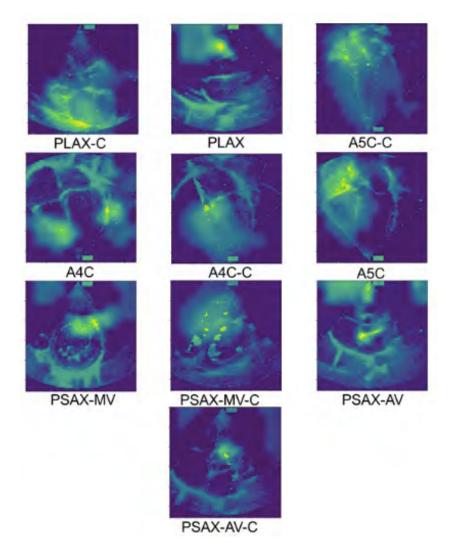
Performance of View Classification Model: F1 Score

View	Precision	Recall	F1-score	Testing sample
PLAX	1.00	1.00	1.00	200
PLAX-C	0.98	0.97	0.97	200
PSAX-AV	0.96	0.96	0.96	28
PSAX-AV-C	0.72	0.95	0.82	22
PSAX-MV	0.94	0.98	0.96	63
PSAX-MV-C	1.00	0.71	0.83	21
A4C	0.97	0.99	0.98	200
A4C-C	0.96	0.98	0.97	125
A5C	0.99	0.96	0.98	200
A5C-C	0.97	0.96	0.96	114

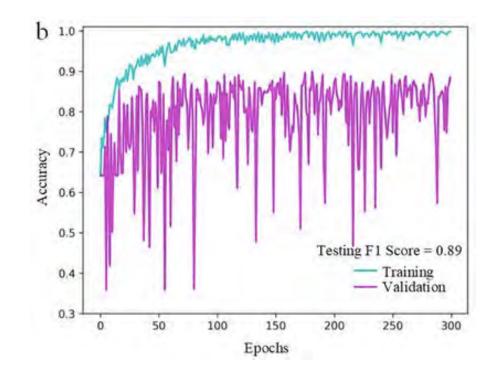
Performance of View Classification Model: t-distributed Stochastic Neighbor Embedding



Performance of View Classification Model: Class Activation Mapping Technique



Performance of MR Detection Model: F1 Score

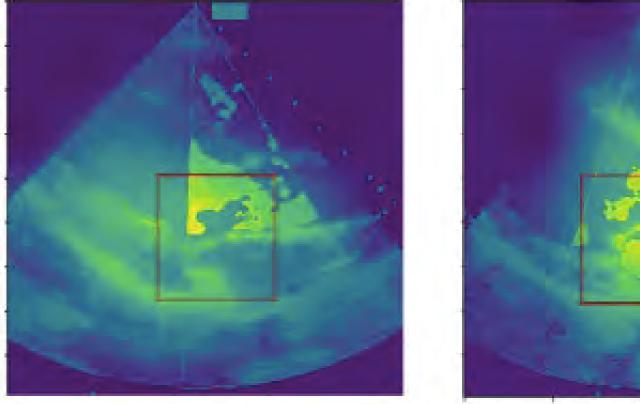


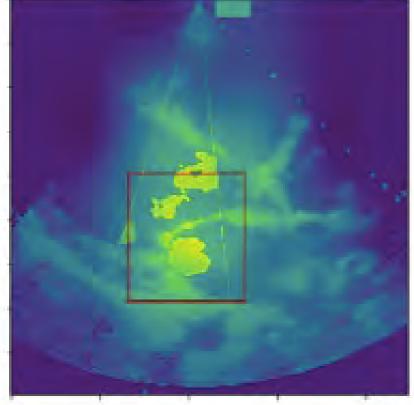
Class	Precision	Recall	F1-score	Testing sample
No-MR	0.93	0.86	0.90	95
MR	0.84	0.92	0.88	74

-

-

Performance of MR Detection Model: Class Activation Mapping Technique





Conclusions

- We present an automated pipeline for assessment of MR in the PLAX-C view with promising early results.
- This study further demonstrates the potential of machine learning in the echocardiographic diagnosis of cardiac disease.
- Our model is capable of achieving a high level of accuracy despite echocardiographic image variability.
- This pipeline is an encouraging first step and suggests the feasibility of building an automated RHD tool from this image set.

Limitations

- Doesn't differentiate MR severity.
- Haven't delved into aortic regurgitation yet.
- Limited training data size.
- All echocardiograms obtained in Malawi.

Next Steps

- We now have access to thousands of RHD screening echocardiograms to continue to improve our model.
- We have connected with researchers across the world interested in harnessing the potential of AI for RHD screening.
- We hope that this tool will reduce morbidity and mortality from RHD worldwide.

Thank You

Stanford University Doff McElhinney Mehreen Iqbal Bruce Ling Shiying Hao

University of Michigan-Shanghai Jiao Tong University Joint Institute Jiajia Luo Fei Feng Yong Fu

Texas Children's Hospital Amy Sanyahumbi

Children's National Hospital Craig Sable

References

 Collaborators. GMaCoD. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. *Lancet.* 2015;385(9963):117-71. doi: 10.1016/S0140-6736(14)61682-2.
Marijon E, Mirabel M, Celermajer DS and Jouven X. Rheumatic heart disease. *The Lancet.* 2012;379:953-964. doi: 10.1016/S0140-6736(11)61171-9.

3. A SS, CA S, M K, MC H, PN K, CG M and DJ P. Task shifting to clinical officer-led echocardiography screening for detecting. *Cardiol Young* 2017;27(6):- 1133-1139. doi: 10.1017/S1047951116002511.

4. Sengupta PP, Huang YM, Bansal M, Ashrafi A, Fisher M, Shameer K, Gall W and Dudley JT. Cognitive Machine-Learning Algorithm for Cardiac Imaging: A Pilot Study for Differentiating Constrictive Pericarditis From Restrictive Cardiomyopathy. *Circ Cardiovasc Imaging.* 2016;9(6). doi: 10.1161/CIRCIMAGING.115.004330.

5. Khamis H, Zurakhov G, Azar V, Raz A, Friedman Z and Adam D. Automatic apical view classification of echocardiograms using a discriminative learning dictionary. *Medical Image Analysis*. 2017;36:15-21. doi: 10.1016/j.media.2016.10.007.

6. Madani A, Ong JR, Tibrewal A and Mofrad MRK. Deep echocardiography: data-efficient supervised and semi-supervised deep learning towards automated diagnosis of cardiac disease. *npj Digital Medicine*. 2018;1(1):59. doi: 10.1038/s41746-018-0065-x.

7. Madani A, Arnaout R, Mofrad M and Arnaout R. Fast and accurate view classification of echocardiograms using deep learning. *Npj Digital Medicine*. 2018;1:8. doi: 10.1038/s41746-017-0013-1.

8. Zhang J, Gajjala S, Agrawal P, Tison Geoffrey H, Hallock Laura A, Beussink-Nelson L, Lassen Mats H, Fan E, Aras Mandar A, Jordan C, Fleischmann Kirsten E, Melisko M, Qasim A, Shah Sanjiv J, Bajcsy R and Deo Rahul C. Fully Automated Echocardiogram Interpretation in Clinical Practice. *Circulation*. 2018;138(16):1623-1635. doi: 10.1161/CIRCULATIONAHA.118.034338.

9. Gao X, Li W, Loomes M and Wang L. A fused deep learning architecture for viewpoint classification of echocardiography. *Information Fusion*. 2017;36:103-113. doi: 10.1016/j.inffus.2016.11.007.

10. Reményi B, Wilson N, Steer A, Ferreira B, Kado J, Kumar K, Lawrenson J, Maguire G, Marijon E, Mirabel M, Mocumbi AO, Mota C, Paar J, Saxena A, Scheel J, Stirling J, Viali S, Balekundri VI, Wheaton G, Zühlke L and Carapetis J. World Heart Federation criteria for echocardiographic diagnosis of rheumatic heart disease—an evidence-based guideline. *Nature Reviews Cardiology*. 2012;9:297. doi: 10.1038/nrcardio.2012.7.

11. Huang G, Liu Z, Maaten Lvd and Weinberger KQ. Densely Connected Convolutional Networks. Paper presented at: 2017 IEEE Conference on Computer Vision and Pattern Recognition; 2017; (CVPR). doi: 10.1109/CVPR.2017.243.

12. Khened M, Kollerathu VA and Krishnamurthi G. Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. *Medical Image Analysis*. 2019;51:21-45. doi: 10.1016/j.media.2018.10.004.

13. He K, Zhang X, Ren S and Sun J. Deep residual learning for image recognition. Paper presented at: 2016 IEEE Conference on Computer Vision and Pattern Recognition; 2016. doi: 10.1109/CVPR.2016.90.

14. Der Maaten LV and Hinton GE. Visualizing Data using t-SNE. Journal of Machine Learning Research. 2008;9:2579-2605. doi:

15. Zhou B, Khosla A, Lapedriza A, Oliva A and Torralba A. Learning deep features for discriminative localization. 2016:2921-2929.

16. Mvungi R, Sliwa K, Carrington M, Stewart S, Zigiriadis E and Mayosi BM. Incidence and characteristics of newly diagnosed rheumatic heart disease in Urban African adults: insights from the Heart of Soweto Study. *European Heart Journal*. 2009;31(6):719-727. doi: 10.1093/eurheartj/ehp530.

17. Carapetis JR, Steer AC, Mulholland EK and Weber M. The global burden of group A streptococcal diseases. *The Lancet Infectious Diseases*. 2005;5(11):685-694. doi: 10.1016/S1473-3099(05)70267-X.

18. Moghaddasi H and Nourian S. Automatic assessment of mitral regurgitation severity based on extensive textural features on 2D echocardiography videos. Comput Biol Med. 2016;73:47-55. doi: 10.1016/j.compbiomed.2016.03.026.

19. Diamantino A, Beaton A, Aliku T, Oliveira K, Oliveira C, Xavier L, Perlman L, Okello E, Nascimento B, Ribeiro ARP, Nunes MCP, Sable C. A focused single-view hand-held echocardiography protocol for the detection of rheumatic heart disease. **Cardiol Young**. 2018; 28:108–117

Definite: A, B, C, or D	
A. Pathologic MR and at least two morphologic features of RHD of th	e mitral valve
B. Mitral stenosis with mean gradient ≥ 4 mm Hg	
C. Pathologic AI and at least two morphologic features of RHD of the	aortic valve
D. Borderline disease of both the aortic and mitral valves	
Borderline: A, B, or C	
A. At least two morphologic features of RHD of the mitral valve	
B. Pathologic MR	
C. Pathologic Al	
Pathologic MR (all criteria must be met)	Pathologic AR (all criteria must be met)
Seen in two views	Seen in two views
Jet length ≥ 2 cm (in at least one view)	Jet length ≥ 1 cm (in at least one view)
Velocity ≥ 3 m/sec for one complete envelope	Velocity ≥ 3 m/sec for one complete envelope
Pansystolic jet in at least one envelope	Pandiastolic jet in at least one envelope
Morphologic features of the mitral valve	Morphologic features of the aortic valve
Anterior leaflet thickening ≥ 3 mm	Irregular or focal thickening
Chordal thickening	Coaptation defect
Restricted leaflet motion	Restricted leaflet motion
Excessive leaflet tip motion during systole	Prolapse

Convolutional Neural Networks (CNN)

