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Echocardiographic Screening for RHD
 More sensitive and specific than clinical exam based screening

 5-10 minute study, ~13 clips

 Barriers:
› Shortage of specialized

healthcare workers
› Equipment
› Electricity

Marijon 2012



Lu 2015

• Simplified criteria to detect RHD
• Mitral regurgitation jet length ≥ 1.5 cm OR
• Any aortic insufficiency 

• Overall sensitivity 73.3% and specificity 82.4% for any RHD

• Sensitivity for definite RHD 97.9%



Single-View Handheld Echocardiogram Protocol
• Diamantino 2018

• 587 studies including 76 definite, 122 borderline, and 389 on 
normal cases 

• Parasternal long axis color Doppler (PLAX-C) view only
• Mitral regurgitation jet length ≥ 1.5 cm or any aortic insufficiency 
• Sensitivity of 81.1%, specificity of 75.5% 



Sanyahumbi 2017
• 8 clinical officers in Malawi

• 3 years clinical officer school
• Subspecialty training pediatrics

• Study flow:
• Training: 3 half-days of didactic cardiology lectures and computer 

RHD echo modules
• Practical: 2 days of mentored echo screening (average 60 echos)
• Evaluation: screened 20 children with & without RHD

• Refer if mitral regurgitation jet more than 1.5 cm or any aortic 
regurgitation

 Κappa statistics for agreement between clinical officer and cardiologist 
referral 



Sanyahumbi 2017

“When asked to provide feedback, however, the clinical 
officers said that, although they performed well, that 
they do not feel confident to screen independently.” 



Machine Learning for Echo Based RHD Screening



Human Subjects Research

• Waiver of approval was obtained from the Stanford University 
Institutional Review Board.

• Approved by the Malawi National Health Sciences Research 
Committee. 



Echocardiograms

• 224 echos performed in Malawi, Africa, as part of a screening 
program to detect latent RHD. 

• Philips CX50 portable echocardiography machine with an S5-1 
transducer probe. 

• Abbreviated RHD screening protocol.

• Machine settings were consistent with World Heart Federation 
recommendations for echocardiographic diagnosis of RHD. 
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Echocardiographic Data Distribution



Performance of View Classification Model: F1 Score



Performance of View Classification Model: F1 Score



Performance of View Classification Model: t-distributed 
Stochastic Neighbor Embedding



Performance of View Classification Model: Class 
Activation Mapping Technique 



Performance of MR Detection Model: F1 Score



Performance of MR Detection Model: Class Activation 
Mapping Technique 



Conclusions

• We present an automated pipeline for assessment of MR in the 
PLAX-C view with promising early results. 

• This study further demonstrates the potential of machine learning in 
the echocardiographic diagnosis of cardiac disease.

• Our model is capable of achieving a high level of accuracy despite 
echocardiographic image variability.

• This pipeline is an encouraging first step and suggests the 
feasibility of building an automated RHD tool from this image set.



Limitations

• Doesn’t differentiate MR severity.

• Haven’t delved into aortic regurgitation yet. 

• Limited training data size. 

• All echocardiograms obtained in Malawi. 



Next Steps
• We now have access to thousands of RHD screening 

echocardiograms to continue to improve our model.  

• We have connected with researchers across the world interested in 
harnessing the potential of AI for RHD screening.

• We hope that this tool will reduce morbidity and mortality from RHD 
worldwide.
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Convolutional Neural Networks (CNN)
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