

Lucile Packard Children's Hospital Stanford

Surgical Management of Corrected Transposition

Michael Ma, MD

May 4, 2019

Stanford University School of Medicine

Lucile Packard Children's Hospital

Department of Cardiac Surgery

Lucile Packard Children's Hospital Stanford

Surgical Management of Corrected Transposition

Michael Ma, MD

May 4, 2019

Stanford University School of Medicine

Lucile Packard Children's Hospital

Department of Cardiac Surgery

Lucile Packard Children's Hospital Stanford

Surgical Management of Atrioventricular and Ventriculoarterial Discordance

Michael Ma, MD

May 4, 2019

Stanford University School of Medicine

Lucile Packard Children's Hospital

Department of Cardiac Surgery

Disclosures: none

Introduction

Anatomy

- Anderson
 - Atrio-ventricular discordance
 - Ventriculo-arterial discordance
 - $RA \rightarrow LV \rightarrow PA$
 - LA \rightarrow RV \rightarrow Ao
- Van Praagh
 - SLL 95%
 - IDD 5%
- <1% of Congenital Heart Disease

Associated Defects

- VSD (70-85%)
- Pulmonary stenosis (60-70%)
- Ebsteinoid tricuspid valve (20-30%)
- AV block (1-2% per year of life, 98% per year freedom from AVB)
 - IDD without increased risk
- In combination:
 - VSD and PS (50%)
 - VSD alone (20%)
 - PS alone (20%)
 - No VSD and no PS (<10%)

Physiologic Repair

- VSD closure
- PS repair/replacement
- TR repair/replacement
- PPM

Long-term outcome of surgically treated patients with corrected transposition of the great arteries

Viktor Hraska, MD^a Brian W. Duncan, MD^b John E. Mayer, Jr, MD^c Michael Freed, MD^d Pedro J. del Nido, MD^c Richard A. Jonas, MD^e

Stanford Children's Management Algorithm

Stanford Children's Management Algorithm

Associated Lesion	Physiology	Early Intervention	Definitive Intervention
VSD only	 LV remains pressure- loaded Adequate semilunar valves 	PAB to control PBF	ASO, VSD closure, hemi- Mustard, SCC
VSD/PS	 LV remains pressure- loaded Inadequate neo-Ao valve for ASO 	PAB v. shunt to control PBF v. no intervention	LV-Ao baffle, hemi-Mustard, SCC; RV-PA conduit v. PA translocation
PS only	 LV loses pressure-load Inadequate neo-Ao valve for ASO Lack of VSD for baffle 	Shunt to achieve adequate PBF v. no intervention	Best candidate for avoiding intervention
None	 LV loses pressure-load Adequate semilunar valves 	PAB for LV training	ASO, hemi-Mustard, SCC

Stanford Children's Health treatment algorithm for common anatomic variants of corrected transposition. LV, left ventricle; Ao, aorta; PAB, pulmonary artery band; PBF, pulmonary blood flow; ASO, arterial switch operation; SCC, superior cavopulmonary connection; RV, right ventricle; PA, pulmonary artery.

Stanford Children's Management Algorithm

Associated Lesion	Physiology	Early Intervention	Definitive Intervention
VSD only	 LV remains pressure- loaded Adequate semilunar valves 	PAB to control PBF	ASO, VSD closure, hemi- Mustard, SCC
VSD/PS	 LV remains pressure- loaded Inadequate neo-Ao valve for ASO 	PAB v. shunt to control PBF v. no intervention	LV-Ao baffle, hemi-Mustard, SCC; RV-PA conduit v. PA translocation
PS only	 LV loses pressure-load Inadequate neo-Ao valve for ASO Lack of VSD for baffle 	Shunt to achieve adequate PBF v. no intervention	Best candidate for avoiding intervention
None	 LV loses pressure-load Adequate semilunar valves 	PAB for LV training	ASO, hemi-Mustard, SCC Neonatal ASO, Senning

Stanford Children's Health treatment algorithm for common anatomic variants of corrected transposition. LV, left ventricle; Ao, aorta; PAB, pulmonary artery band; PBF, pulmonary blood flow; ASO, arterial switch operation; SCC, superior cavopulmonary connection; RV, right ventricle; PA, pulmonary artery.

Hemi-Mustard/Superior Cavopulmonary Connection

- In all patients:
 - SA node preservation
 - Avoidance of SVC obstruction
 - Clamp time reduction / improvement in technical reproducibility
 - "1/2 Mustard anatomically, ¼ Mustard surgically"
- In select patients:
 - Apicocaval juxtaposition (ventricular mass and apex align with cava)
 - Situs inversus with levo/mesocardia
 - Situs solitus with dextro/mesocardia
 - Conduit preservation
 - Native PA translocation
 - Tricuspid valve competence

LV Training

- PA band placement (silastic)
 - Place band on distal MPA to avoid distortion of the pulmonary (ie neo-aortic) root and valve
- Central venous line (CVP = LVEDP)
- Direct MPA or indirect (through RA) LV catheter placement

• TEE

 Ionotropic support (mild (ie dopamine 3-5 mcg/kg/min))

- PA band titration under guidance
 - Band to achieve near-systemic MPA/LVSP or heart failure
 - Monitor CVP and TEE
 - CVP < 8-10
 - MR \leq mild
 - No regional wall motion abnormalities
 - No significant ventricular arrhythmia

ICU Management

- POD 0 maintenance of ionotropic support, mechanical ventilation, sedation
- POD 1 TTE to assess function, extubation
- POD 2 TTE to assess function, gradual ionotropic downtitration
- Exercise clinical judgment in the exact timing of postoperative support de-escalation (ie take more time as needed)

Interval Assessment

- At 6-9 months
 - Catheterization
 - MRI
 - Echo

(1) Left ventricular pressure	90% of systemic
(2) Left ventricular systolic function	Ejection fraction > 55%
(3) Left ventricular end diastolic pressure	Less than 12 mm Hg
(4) Mitral valve function	Mild or less insufficiency
(5) Left ventricular mass (by MRI)	65 g/m ²

Results

Left Ventricular Retraining and Double Switch in Patients With Congenitally Corrected Transposition of the Great Arteries

Ali N. Ibrahimiye, MD¹, Richard D. Mainwaring, MD¹, William L. Patrick, BS¹, Laura Downey, MD², Vamsi Yarlagadda, MD³, and Frank L. Hanley, MD¹ World Journal for Pediatric and Congenital Heart Surgery 2017, Vol. 8(2) 203-209 © The Author(s) 2016 Reprints and permission: sagepub.com/journalsPermissions.nav DOI: 10.1177/2150135116683939 journals.sagepub.com/home/pch SAGE

Post-operative Training

- We observed unexpected LV failure in our early experience
- Theory
 - LV training develops the ventricle to a peak systolic pressure that the PAB can simulate
 - Small MPA stump does not retain an appropriate diastolic pressure for the LV to train against in late diastole/early systole at the time of isovolumic contraction before aortic valve opening
 - LV remains undertrained for this important phase of the cardiac cycle
- Practice
 - LV must continue to train after definitive repair
 - Continue aggressive fluid restriction and diuretic therapy for one year after definitive repair

Double Switch

Ventriculo-Arterial Discordance

Atrio-ventricular Discordance

Native PA Root Translocation

Results

The hemi-Mustard/bidirectional Glenn atrial switch procedure in the double-switch operation for congenitally corrected transposition of the great arteries: Rationale and midterm results

Sunil P. Malhotra, MD,^a V. Mohan Reddy, MD,^b Mary Qiu, BS,^b Timothy J. Pirolli, MD,^b Laura Barboza, BS,^b Olaf Reinhartz, MD,^b and Frank L. Hanley, MD^b

FIGURE 1. The surgical approach to anatomic repair in 48 patients. *ccTGA*, Congenitally corrected transposition of the great arteries; *PAB*, pulmonary artery banding; *AAS*, arterial-atrial switch; *RAS*, Rastelli-atrial switch.

Update

- 98 patients
 - Arterial switch 49
 - Rastelli 49
 - Hemi-Mustard with Superior Cavopulmonary Connection 77
 - Pulmonary root translocation 3
 - Free PI without stenosis 1
 - Mild PS/PI 1
 - Mild PI, no PS 1
 - Operative mortality 3

Summary

Summary

- The initial management of corrected transposition is dependent on its commonly associated defects, and the timing of diagnosis.
- In most variations, returning the morphologic left ventricle to the systemic circulation is prioritized to reduce the known long-term morbidity and mortality of relying on systemic morphologic right ventricular support.
- Left ventricular deconditioning can be managed with an LV training algorithm that utilizes surgical pulmonary artery banding coupled with methodical and regular post-operative assessments of biventricular function through echocardiography, catheterization, and MRI.
- Ultimate surgical correction is afforded by the double (atrial and arterial-level) switch operation. A hemi-Mustard and superior cavopulmonary connection (1) reduces known atrial baffle complications, (2) improves tricuspid regurgitation, (3) extends the longevity of RV-PA conduits, and (4) enables native pulmonary artery translocation and preservation in patients with intrinsic pulmonary stenosis.

Thank You