The Illusions and Innovations of Heart Failure Therapy in Children

Paul F. Kantor MBBCh, MSc. FRCPC Professor and Division Chief Pediatric Cardiology

Disclosure

Relationship with Industry: Novartis (consultant/ scientific advisory)

Off label use of medical therapy for children with heart failure

Objectives

- Understand the challenges we face in treating heart failure in children.
- Review some common illusions of success in heart failure treatment
- Highlight some innovative approaches and why they may prove effective.
- I will not discuss improvements in devices, or cardiac transplantation today.

Imagine the conversation....

Mother: Doctor what has happened to my child?

- You: He has heart failure, due to a problem with the heart muscle.
- Mother: What is the actual problem with the heart muscle ?
- You: We don't really know
- Mother: Well, can you tell me what caused it ?
- You Actually, it's hard to say...it may have been any one of a number of things, that he was born with or acquired. We don't really know.

Imagine the conversation....

- Mother: What do we do now ?
- You : Well, we have a number of tests to run, and then we have a number of treatments for heart failure, which we can try....
- Mother: Do you know if they will help? You: No, we don't really know- maybe, but not for sure.
- Mother: Well, will he get better ? You: I'm afraid we don't know.

Challenges we face

- Disease presents at an advanced stage, with indistinct symptoms
- There are <u>many</u> causes and great variation in the underlying etiology.
- Medical treatments are largely unproven, in children: with uncertainty as to
 - Indications
 - Dosing
 - When to discern treament failure.

CASE SCENARIO 1

The case of EB

- Female age 4 days
- Unremarkable pregnancy. NSVD at 36 6/7
- Weight 3.3 kg
- Apgars 9 / 9.
- Discharged from birthing hospital at 72 hrs after phototherapy

CASE SCENARIO 1

- Presents to ER, drowsy, not feeding well.
- BP 65/45, HR 150, Femoral pulses normal.
- Afebrile
- WBC 23,000/mm³, no left shift.
- Admitted to NICU for empirical antibiotics (rule out sepsis).
- Mother: Fever in the last week, upper respiratory symptoms.

apth. TIME FAST ACCOMPANIED NOTIFICATION OF KIN EMERGENCY PHYSICIAN 1955 TRACK BY RAICIND UNACCOMPANIED YES NO WHOM SIZE LEFT PUPU TEMP. 364 PULSE RESP. B.P. SAO, O₂ rate PEAK FLOW AIGHT FURI VA RT VA LT 812£ REACT NMP LAST TETANUS 168. 40 MEDICATIONS IN NONE MODE OF ADMISSION WALK W/C KCCARRIED STRETCHER AMBULANCE ALLERGIES/ NONE NONE REACTIONS Born at 36 wks : 6 days vaginally. Joundiced that photo-therapy on wednesday and Thursday some Today, decreased "PO in Hake Dowsy Normal diapers. air entry clear Abd soft Bauel Mucous membranes moist Appears + joundice. Raises for short brief portieds when, sounds proxint. dry -Albranas ORDERS Ссвс TRIL. CARDIAC ENZYMES TIME HISTORY, FINDING, TREATMEN ୵ୖୖ୶ ZLI ELEC. 🗌 ABG 20:00 ALT ECG UREA C ALP CXR CREAT Guo PREG □oc EDIE RECORDS EMERGENCY MEDICAL 21:15 Rua Chre NETRICTION COD FOLLOW

Southern California

Chi Ho:

LOS ANGELES

Cardiology consult

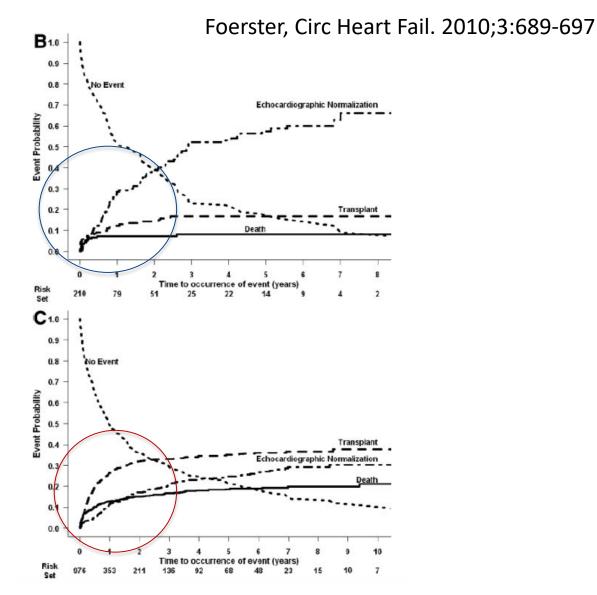
- Fellow called 5pm next day (Saturday), because ectopic beats noted on monitor in the NICU.
- Patient examined. Afebrile. BP 55/35mmHg SaO2 96% on RA. RR 50 HR 176 ? Diminished pulses
- "Occasional wide complex beats"

Chest X-Ray

USC University of Southern California

Diagnosis: Acute Fulminant Myocarditis

- Persistent lactate of 3-4
- Bradycardic at 8pm
- CPR for 30 minutes- cannulated onto ECMC
- Troponin T = 9.8


Treatment of Acute Fulminant Myocarditis.

In addition to supportive care

- Antiviral therapy ? (which agent)
- Steroids ?
- IVIG ?
- Azathioprine/Cyclosporine ?
- The role of Biopsy:

Conventional Wisdom

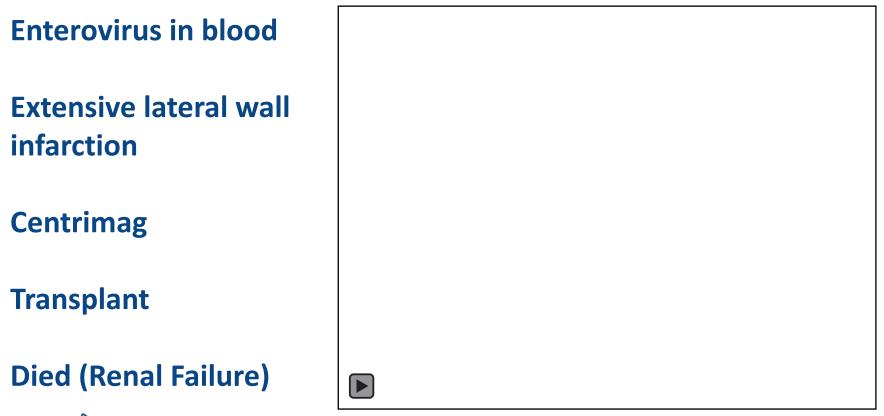
Myocarditis

Idiopathic dilated cardiomyopathy

Don't worry- We have the best doctors !

Hair Transplant Pioneer Named "Best Doctor" in New York Magazine for 10th Consecutive Year

📩 Like Share


Dr. Robert M. Bernstein, the only hair transplant physician to be included in New York Magazine's 2009 Best Doctors edition for ten consecutive years, was selected as one of the top 1,107 physicians by a peer-review survey of 12,000 New York City area medical professionals.

Illusion 1:

Knowing the possible outcome does not mean we understand the disease, or that we able to treat it effectively

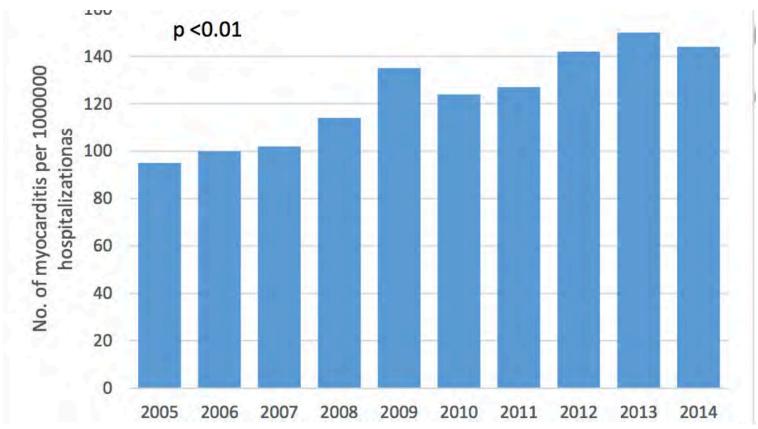
Illusion 2:

Immune supression (or immune modulation) is effective treatment

Trial	Year	Туре	Pts (n)	Diagnosis	Primary endpoint	Results	Author ^{ref}
Prednisone trial for DCM	1989	Randomized controlled trial (RCT): prednisone (PDN)	102	'Reactive' DCM (n = 60) 'Nonreactive DCM)' (n = 42)	Either higher LV ejection fraction (LVEF) at 3 months or lower LV end-diastolic dimension and better exercise tolerance	Favourable	Parrillo ¹⁷⁶
MTT	1995	RCT: PDN and cyclosporine or azathioprine	111	Acute biopsy-proven myocarditis (unknown aetiology)	LVEF at 6 months	Neutral	Mason ⁶
Giant cell myocarditis treatment	2008	Prospective: PDN and cyclosporine	11	Giant cell myocarditis (autoimmune)	Survival at 1 year	Favourable	Cooper ⁹⁹
trial	2003	Prospective: PDN and azathioprine	41	Active myocarditis and chronic heart failure (aetiology known in retrospect)	LVEF at 1 year	Favourable in virus-negative aabs-positive autoimmune forms	Frustaci ¹⁰⁰
	2001	RCT: PDN and azathioprine	84	Inflammatory DCM (unknown aetiology, increased HLA espression on EMB)	LVEF at 3 months, sustained at 2 years	Favourable	Wojnicz ¹⁰³
TIMIC	2009	RCT: PDN and azathioprine	85	Inflammatory virus-negative DCM	LVEF at 6 months	Favourable	Frustaci ¹⁰¹

rsitvof

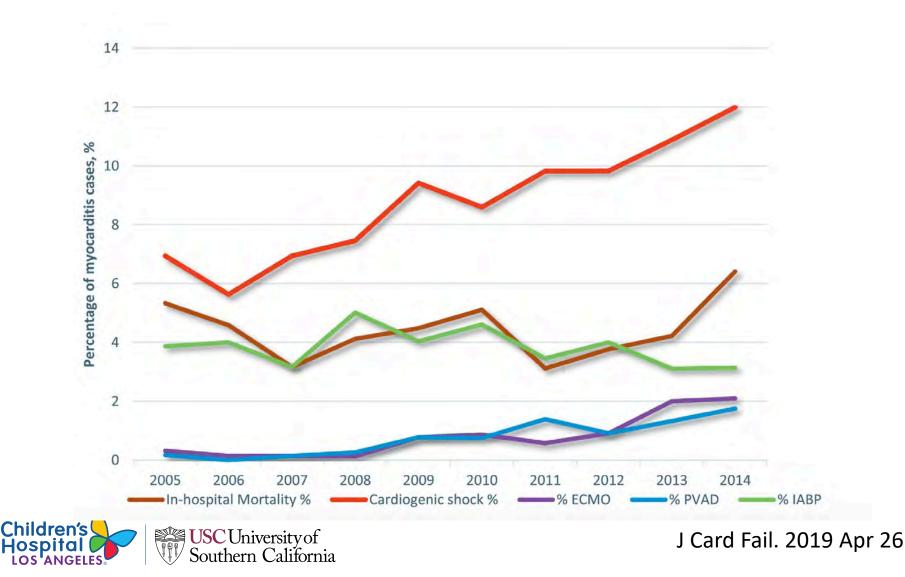
outhern California



What have we done ?

- Put out guidelines
- 2004
- 2013
- 2015
- Published textbooks
- Many many review articles
- Held symposia
- Funded grants
- Increased advocacy

We are making the diagnosis of myocarditis more often (not by biopsy)


Trends in the Incidence of In-Hospital mortality, Cardiogenic Shock and Utilization of Mechanical Circulatory Support Devices in Myocarditis (Analysis of National Inpatient Sample Data, 2005-2014)

USC University of Southern California

J Card Fail. 2019 Apr 26

We are using mechanical support devices more commonly

Illusion 3: Myocarditis is entirely an acquired cardiomyopathy

	Gene Status		
	Positive	Negative	VUS
	n=49	n=117	n=113
Myocarditis			
Yes	4 (13%)	15	13
n=32		(47%)	(41%)
No	45 (18%)	102	100
n= 247		(41%)	(41%)

Myocarditis did not exclude the presence of a gene mutation.

Innovation

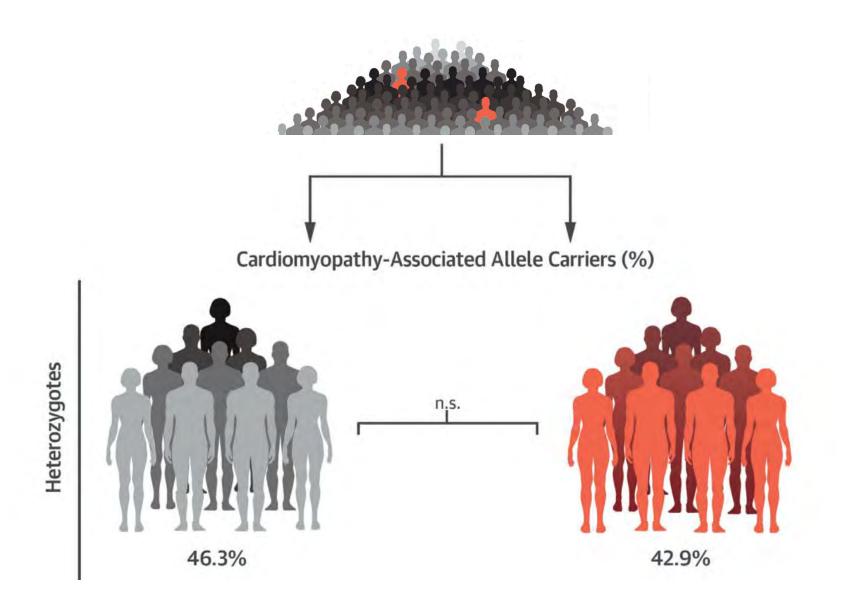
Myocarditis may be a coincident event in a patient with an underlying cardiomyopathy – related gene anomaly

Autosomal Recessive Cardiomyopathy Presenting as Acute Myocarditis

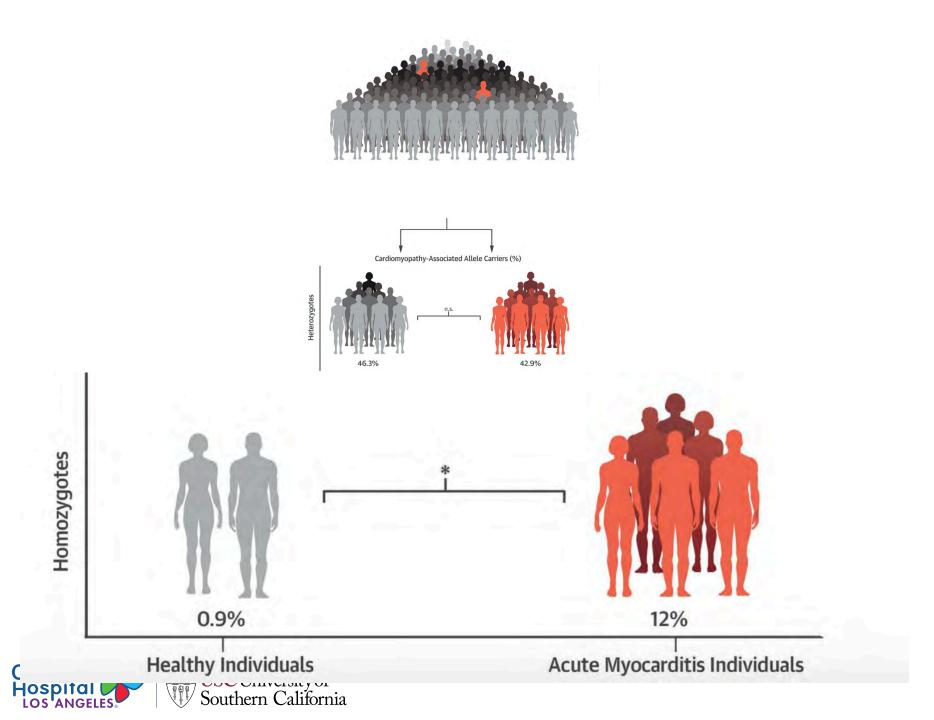
Serkan Belkaya, PHD,^a Amy R. Kontorovich, MD, PHD,^{b,c} Minji Byun, PHD,^a Sonia Mulero-Navarro, PHD,^b Fanny Bajolle, MD, PHD,^d Aurelie Cobat, MD, PHD,^e Rebecca Josowitz, MD, PHD,^b Yuval Itan, PHD,^a Raphaelle Quint, MSc,^a Lazaro Lorenzo, MSc,^e Soraya Boucherit, MD,^{e,f} Cecile Stoven, MD,^g Sylvie Di Filippo, MD, PHD,^h Laurent Abel, MD, PHD,^{a,e,f} Shen-Ying Zhang, MD, PHD,^{a,e,f} Damien Bonnet, MD, PHD,^d Bruce D. Gelb, MD,^b Jean-Laurent Casanova, MD, PHD^{a,e,f,i,j}

J Am Coll Cardiol. 2017 Apr 4; 69(13): 1653–1665.

Autosomal Recessive Cardiomyopathy Presenting as Acute Myocarditis


Serkan Belkaya, PhD,^a Amy R. Kontorovich, MD, PhD,^{b,c} Minji Byun, PhD,^a Sonia Mulero-Navarro, PhD,^b Fanny Bajolle, MD, PhD,^d Aurelie Cobat, MD, PhD,^e Rebecca Josowitz, MD, PhD,^b Yuval Itan, PhD,^a Raphaelle Quint, MSc,^a Lazaro Lorenzo, MSc,^e Soraya Boucherit, MD,^{e,f} Cecile Stoven, MD,^g Sylvie Di Filippo, MD, PhD,^h Laurent Abel, MD, PhD,^{a,e,f} Shen-Ying Zhang, MD, PhD,^{a,e,f} Damien Bonnet, MD, PhD,^d Bruce D. Gelb, MD,^b Jean-Laurent Casanova, MD, PhD^{a,e,f,i,j}

 whole-exome sequencing of 42 unrelated children with acute myocarditis some with proven viral causes.



Population of individuals who carry a gene variant in a cardiomyopathy associated gene

Findings

- No enrichment of TLR or IL- α/B genes
- No enrichment of heterozygous rare variants
- Massive enrichment of homozygous rare variants, and some compound heterozygous rare variants

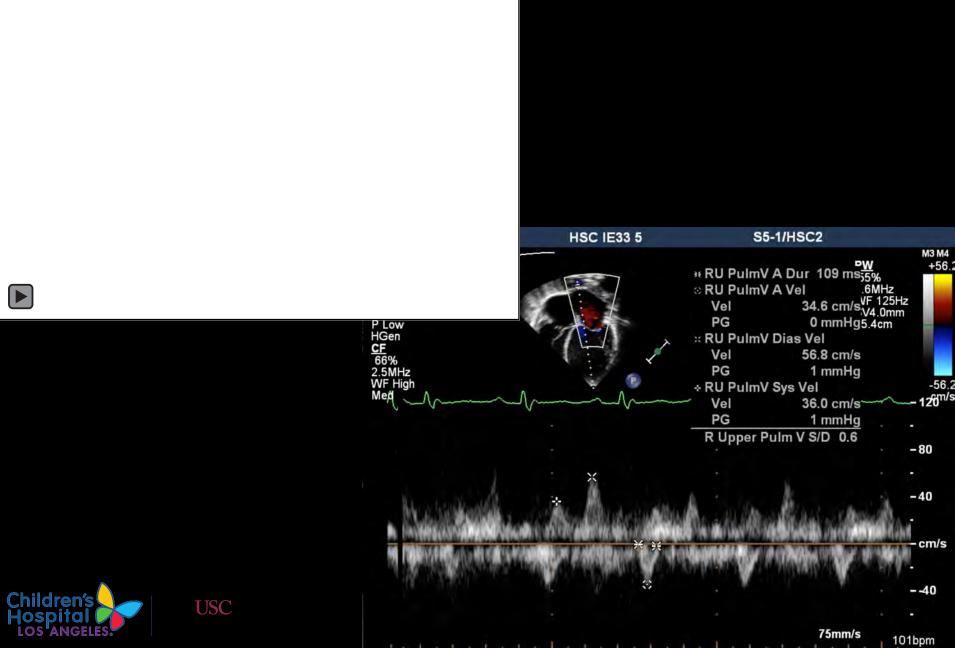
What does this mean?

- Many people get a virus, but vanishingly few get myocarditis.
- Still fewer, will die from the disease
- We can likely predict which those people will be by having exome sequence information available
- What can we do about it ?

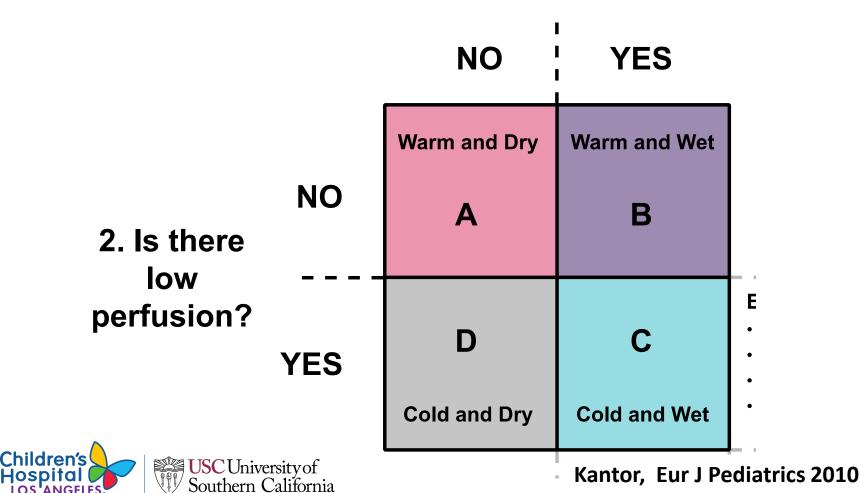
Case 2

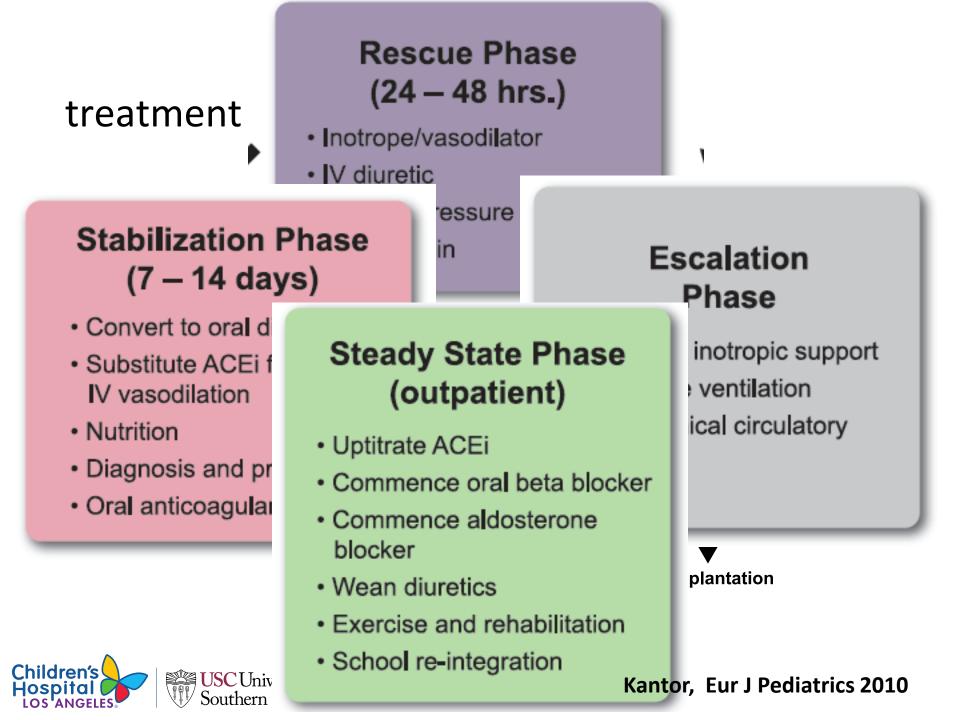
14 year old with increasing SOB on effort.

- Only child, South Asian descent.
- No sports, "works in mushrooms"
- Fatigue and weakness



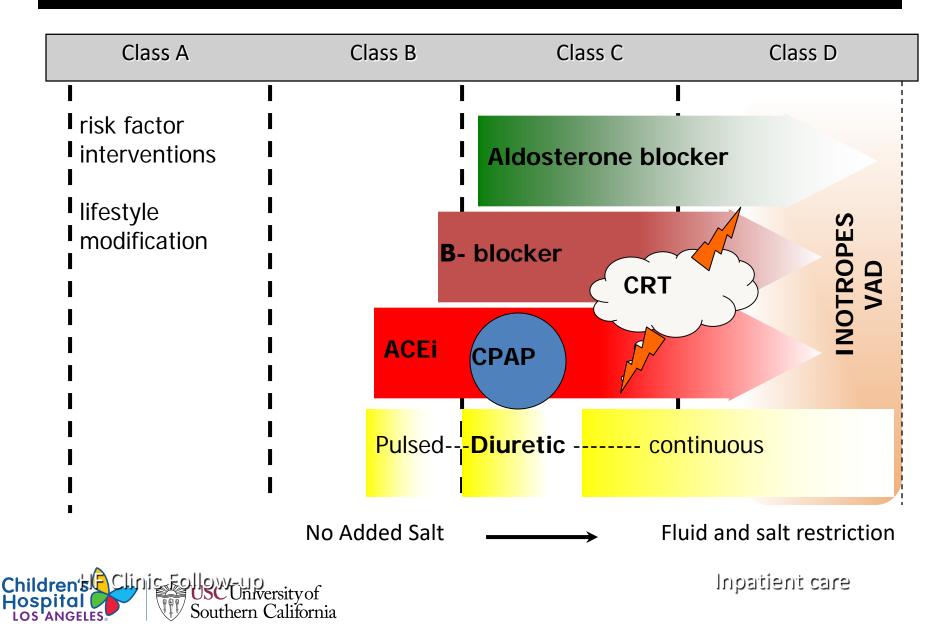
Background


- No Family History. Non-consanguineous
- No toxin exposure (mushrooms ?)
- Examination: mild dyspnea at rest
- No muscle weakness/ wasting.
- BP 80/55, HR 115. Pulses reduced. Liver 3cm. JVP 6 cm. Gallop rhythm. Soft blowing systolic murmur



1. Is there congestion?

Table 3. Tests relevant to the evaluation of Cardiomyopathy.


Test	Important findings to note				
ECG	Primary rhythm abnormality, evidence of ischemia, pre-excitation. Evidence of hypertrophy, T wave changes.				
Echocardiogram					
- 2D	Morphologic pattern of cardiomyopathy.				
- tissue Doppler	Assessment of diastolic function.				
- colour Doppler, strain analysis	Evidence of mechanical dyssynchrony.				
Urine					
- urine chemistry	Ketones (metabolic disorder), pH, concentrating defect.				
- amino acids	Screening to exclude primary or secondary aminoacidurias.				
- organic acids	Screening to exclude organic acidurias. Also abnormal in disorders of pyruvate and lactate metabolism, multiple carboxylase deficiency. 3-OH methyl glutaconic acid excretion in Barth syndrome.				
- oligosaccharide screen	Disorders of carbohydrate metabolism.				
- mucopolysaccharide screen	Screening to exclude genetic mucopolysaccharidoses (type I, II, III) mucolipoidosis.				

Kantor, Eur J Pediatrics 2010

Blood chemistry				
- albumin	Nutritional status, protein losing states.			
- amino acids	Exclusion of inborn errors of amino acid metabolism (e.g. oxalosis, alkaptonuria, homocysteinuria).			
- ammonia	Presence of a hepatic disease, urea cycle abnormality or inborn error of metabolism.			
- BNP or NT-proBNP	Evaluation of degree of heart failure severity.			
 carnitine (total and free) including acylcarnitines 	Screening for carnitine deficiency, fatty acid oxidation disorders (carnitine palmitoyl transferase IIt deficiency, long chain and very long chain acyl dehydrogenase deficiencies).			
- calcium	Abnormal in vitamin D deficiency, renal disease.			
- cholesterol	Abnormal in dyslipidemias, Wolman disease, Barth syndrome.			
- copper, caeruloplasmin	Abnormal in Wilson's disease.			
- glucose	Various acute metabolic disorders with abnormal hepatic function or carbohydrate metabolism.			
- lactate	Mitochondrial disease, abnormal fatty acid oxidation, severe heart failure.			
- liver enzymes	Abnormal in acute hepatic congestion, inborn errors of metabolism. Prothrombin time is useful function indicator.			
- magnesium	Abnormal in renal tubular disease, relevant to cardiac rhythm management.			
- pyruvate	Pyruvate dehydrogenase deficiency, mitochondrial OXPHOS abnormalities.			
- selenium	Keshan disease, other trace element deficiency states.			
- thyroid function tests	Hyperthyroidism, or hypothyroidism.			
- venous pH	Determine anion gap in metabolic acidosis states.			
- vitamin assays (D, B1, C)	Abnormal in Vitamin D deficiency (congenital or nutritional), Beri-beri, nutritional deficiencies.			
Autoimmune disease markers				
- ANA	Screening test for systemic lupus (SLE).			
- ASOT	Post streptococcal meumatic heart disease.			
- CRP	Marker of inflammatory dises, severity of cardiac faliure.			
- ENA (Anti Ro/La)	Specific test for SLE.			
- ESR	Indicates inflammatory disorder/infection.			

Systolic Heart Failure general guide

Polypharmacy in Heart Failure

1700s	1930s	1980s	1990s	2000s	2010s
Digoxin	Digoxin	Digoxin	Digoxin	Diuretic	Diuretic
	Diuretic	Diuretic	Diuretic	ACEi/ARB	ACEi/ARB
		ACEi	ACEi	Cardiosel. BB	Cardiosel. BB
		Nonsel. BB	MRA	MRA	MRA
			Nonsel. BB	Digoxin	Digoxin
			Nonsel. BB Nitrates	Digoxin Nitro-dilator	Digoxin Nitro- dilator
					Nitro-
Children's					Nitro- dilator

How is this interpreted ?

4 y/o Fontan

DISCHARGE MEDICATIONS:

- 1. Lansoprazole 15 mg G-tube b.i.d.
- 2. Azithromycin 100 mg G-tube b.i.d. on Monday, Wednesday, and Fridays.
- 3. Qvar 100 mcg/puffs MDI 2 puffs through an inhaler b.i.d.
- 4. PEG 3350 at 7 grams G-tube daily.
- 5. Vitamin D 2000 units G-tube daily.
- 6. Acetazolamide 100 mg G-tube b.i.d.
- 7. Amiloride 8 mg G-tube b.i.d.
- 8. Ethacrynic acid 25 mg G-tube b.i.d. with ethacrynic acid 10 mg IV every Tuesday and Friday.
- 9. Metolazone 4 mg G-tube daily.
- 10. Granisetron 3 mg G-tube b.i.d.
- 11. KCl 5 mmol per 100 mL of feed.
- 12. Sodium chloride 4 mmol per 100 mL of feed.
- 13. Aldactone 20 mg G-tube b.i.d.
- 14. Tadalafil 20 mg G-tube daily.
- 15. Metoclopramide 2 mg G-tube t.i.d.
- 16. Pedialyte 5 mL G-tube daily.

DISCHARGE RESPIRATORY MANAGEMENT:

BiPAP 130 over 6 cm of water overnight with 1.5 L/minute low-flow nasal cannula oxygen during the day.

DISCHARGE NUTRITION MANAGEMENT:

Feeds: 50% Pediatric complete over 50% Novoste source renal 2 kcal/oz formula with 2 scoops of Duocal and 5 mmol per 100 mL of KCL and 4 mmol per 100 mL of NACL to the daily formula volume.

4 Diuretics,

9 separate dose administrations per day

23 med administrations daily (not including feed supplements & anticoagulation).

No ACEi , Digoxin or Beta blocker therapy.

Problems with polypharmacy

Medication Initiation Burden Required to Comply With Heart Failure Guideline Recommendations and Hospital Quality Measures

Additive therapy is guideline driven

Allen L, Circulation 2015; 132:1347

"47% needed to start at least 1 <u>NEW</u> HF-related medication by discharge, 24% needed to start >1 medication,

14% needed to start \geq 3 medications to be in compliance with HF guidelines"

Guidelines, polypharmacy, and drug-drug interactions in patients with multimorbidity

A cascade of failure

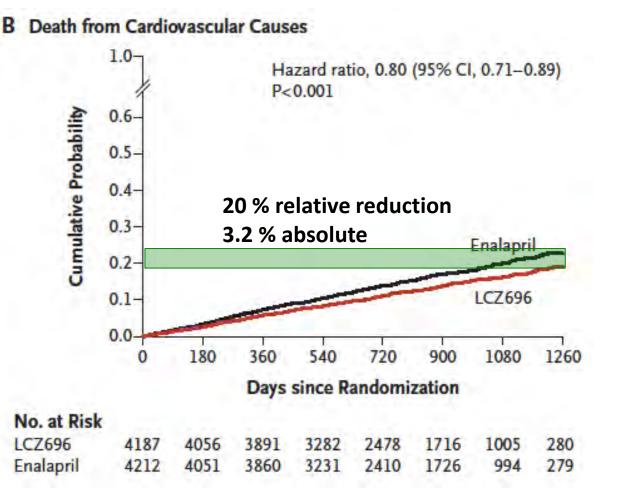
Open-ended guidelines drive drug interactions Marengoni A, BMJ 11 March 2015

"How should doctors manage patients with multiple diseases to help to prevent a cascade of problems that starts with inadequate guidelines and moves through polypharmacy to an increased risk of drug-drug interactions?"

USC University of Southern California

Recent Trials and Tribulations (AHF)

Drug	Trial	Result	Implication
Levosimendan (Ca ²⁺ sensitizer)	REVIVE I and II (placebo) SURVIVE (Dobutamine)	No change in mortality 个Arrhythmias Improved GAS	Not FDA approved. Some empirical use in Europe.
Nesiritide (natriuretuc analogue)	ASCEND-HF (placebo)	No change in symptoms, renal function readmission/ death	Limited role in Acute HF
Rolofylline (Adenosine A2 antagonist)	PROTECT (placebo)	No change in readmission renal failure	Not being marketed
Serelaxin (Human recombinant Relaxin -2 (pleiotropic effects)	RELAX –HF RELAX-2HF	Mildly improved Dyspnea. CV Death ?readmission same	EMA/FDA not fans. Pediatric Study suspended

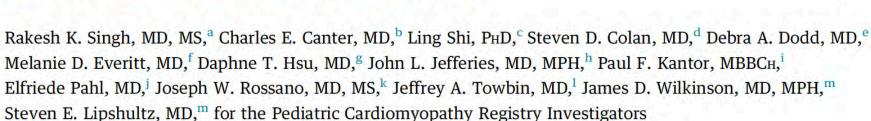

PARADIGM-HF (2014)

Valsartan-Sacubitril vs. Enalapril

N=8442 Background: Age 69 (WM) NYHA II EF: 27 %

Therapy Digoxin: 26 % B-blockers: 93% MRA: 54 %

USC University of Southern California



Number needed to treat is 31

How effective is all of this?

Survival Without Cardiac Transplantation Among Children With Dilated Cardiomyopathy

J Am Coll Cardiol 2017;70:2663–73

Illusion 4: More medications = better outcomes

1.0 Log-Rank P-value = 0.0006 0.9 0.8 No difference in 0.7 Survival Probability **Transplant Rate** 0.6 We are better at 0.5 **Difference** in avoiding death 0.4 Mortality at 3 0.3 years We aren't curing 0.2 0.1 disease 1990-1999 - 12% 0.0 2000-2009-8% 10 15 5 0 1 20 N at risk 1990-1999 1199702 319 95 18 754 369 2000-2009: 94 Estimated Time to Death, Years

USC University of Southern California

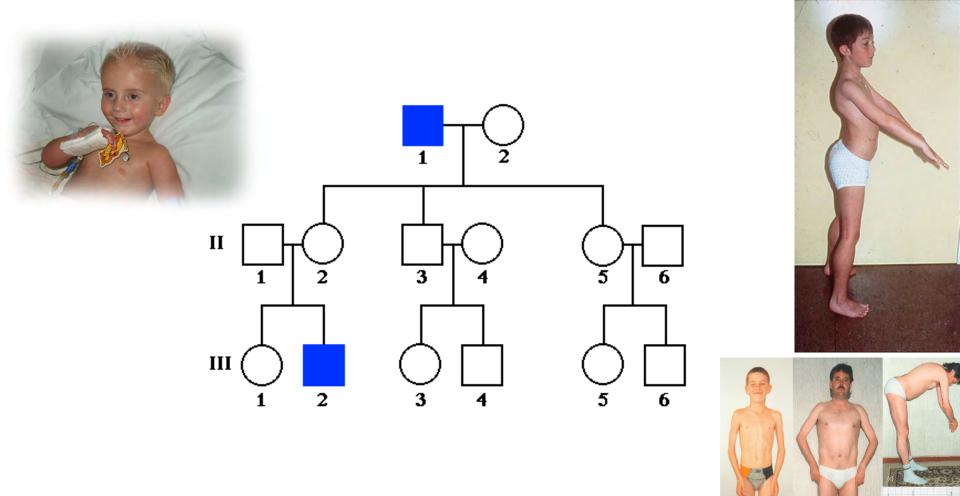
J Am Coll Cardiol 2017;70:2663-73

Back to our patient

- Underwent a Transplant.
- Discharged home successfully.
- Still fatigued on effort with decreased effort tolerance.

Illusion 5:

Transplantation cures the disease


- CPK: 1200.
- Dystrophin Gene deletion= Becker Muscular dystrophy

What innovations are occuring in this area ?

X-LINKED

-Barth syndrome, mitochondriopathies -Duchenne's, Becker's

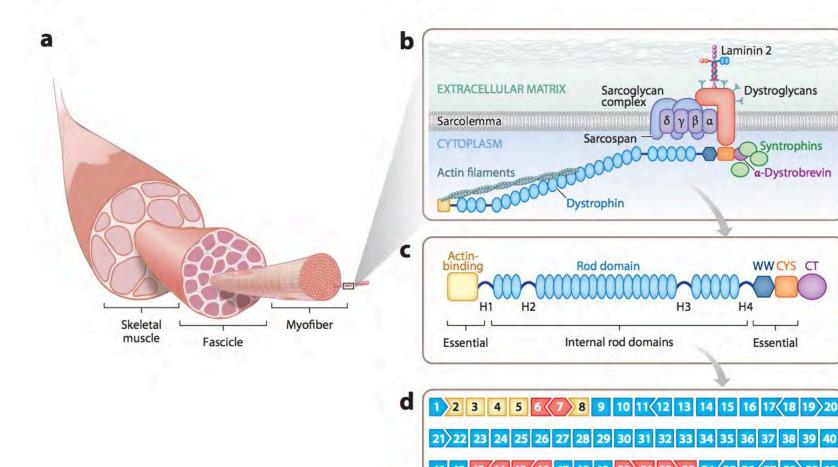
- Emery Dreifuss

Becker Muscular Dystrophy

- "Milder" form of Duchenne's MD
- Variable presentation/clinical course
 - Milder skeletal muscle disease
 - Only 10% are wheel chair bound by age 40 and none in childhood years

Cardiac (DCM)

- Onset usually by 30 years
- 70% develop DCM
- Heart failure most common cause of death



Cardiac surveillance and Rx in BMD

- First echo/ECG after 5 years
- q2 years till 10 years
- Annually thereafter (and within 12 mos prior to major surgery)
- cMRI not routinely recommended
- Treat LV dysfunction with ACE-I, beta blocker
- No pre-emptive therapy

Molecular basis of Duchenne-Becker

(57 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

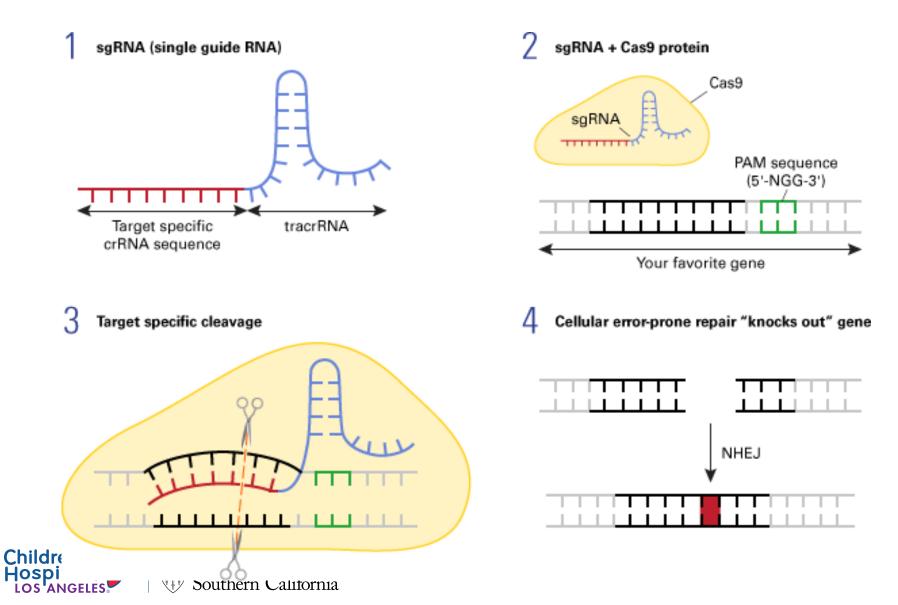
Syntrophins α-Dystrobrevin

WWCYS CT

Essential

58

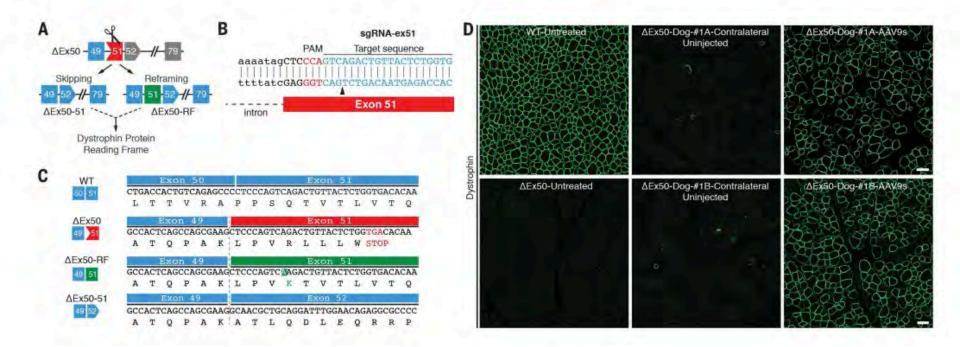
59 60


USC University of Southern California

Innovation Modifying gene expression by replacing cells, skipping exons, or editing the mutation

CAP-1002	Cardiosphere derived cells (immunomodulatory, anti fibrotic) Improved exercise and respiratory capacity.	HOPE1 - intracoronary injection HOPE2 - IV injection in boys and young men
Eteplirsen	Anti-sense oligonucleotide (exon 51 skipping)	FDA approved
Golodirsen	Anti-sense oligonucleotide (exon 53 skipping)	Phase 1, 2
Gene editing	CRISPr/Cas9 dystrophin gene editing	Mouse models

Gene correction



Gene editing restores dystrophin expression in a canine model of Duchenne muscular dystrophy

Leonela Amoasii^{1,2}, John C. W. Hildyard³, Hui Li¹, Efrain Sanchez-Ortiz¹, Alex Mireault¹, Daniel Caballero¹, Rachel Harron³, Thaleia-Rengina Stathopoulou⁴, Claire Massey³, John M. Shelton⁵, Rhonda Bassel-Duby¹, Richard J. Piercy³, Eric N. Olson^{1*}

Amoasii et al., Science 362, 86-91 (2018)

Conclusion

Illusion

There are many treatments for Heart Failure in Children that constitute the appearance of effectiveness, but in reality fall short

Innovation

Innovation is occurring and will almost certainly lead to molecular therapy for DCM

Challenge At this stage we have no basis for that treatment in more than 2/3 of cases. The cause remains indeterminate.

USCUniversity of Southern California

Thank You